Part Number Hot Search : 
THC7984 HD74H 2405DR NTE2581 IF4511 BTC4505 U60DN 124JR2Q
Product Description
Full Text Search
 

To Download AD8541AKSZ-R2 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  general-purpose cmos rail-to-rail amplifiers ad8541/ad8542/ad8544 rev. e information furnished by analog devices is believed to be accurate and reliable. however, no responsibility is assumed by analog devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. specifications subject to change without notice. no license is granted by implication or otherwise under any patent or patent rights of analog devices. trademarks and registered trademarks are the property of their respective owners. one technology way, p.o. box 9106, norwood, ma 02062-9106, u.s.a. tel: 781.329.4700 www.analog.com fax: 781.461.3113 ?2007 analog devices, inc. all rights reserved. features single-supply operation: 2.7 v to 5.5 v low supply current: 45 a/amplifier wide bandwidth: 1 mhz no phase reversal low input currents: 4 pa unity gain stable rail-to-rail input and output applications asic input or output amplifiers sensor interfaces piezoelectric transducer amplifiers medical instrumentations mobile communications audio outputs portable systems general description the ad8541/ad8542/ad8544 are single, dual, and quad rail- to-rail input and output single-supply amplifiers featuring very low supply current and 1 mhz bandwidth. all are guaranteed to operate from a 2.7 v single supply as well as a 5 v supply. these parts provide 1 mhz bandwidth at a low current consumption of 45 a per amplifier. very low input bias currents enable the ad8541/ad8542/ad8544 to be used for integrators, photodiode amplifiers, piezoelectric sensors, and other applications with high source impedance. the supply current is only 45 a per amplifier, ideal for battery operation. rail-to-rail inputs and outputs are useful to designers buffering asics in single-supply systems. the ad8541/ad8542/ad8544 are optimized to maintain high gains at lower supply voltages, making them useful for active filters and gain stages. the ad8541/ad8542/ad8544 are specified over the extended industrial temperature range (C40c to +125c). the ad8541 is available in 8-lead soic, 5-lead sc70, and 5-lead sot-23 packages. the ad8542 is available in 8-lead soic, 8-lead msop, and 8-lead tssop surface-mount packages. the ad8544 is available in 14-lead narrow soic and 14-lead tssop surface-mount packages. all msop, sc70, and sot versions are available in tape and reel only. pin configurations 1 2 3 5 4 ?in a +in a v+ out a ad8541 v? 0 0935-001 figure 1. 5-lead sc70 and 5-lead sot-23 (ks and r j suffixes) nc ?in a +in a v? v+ out a nc nc 1 2 3 4 8 7 6 5 ad8541 nc = no connect 00935-002 figure 2. 8-lead soic (r suffix) ad8542 1 2 3 4 8 7 6 5 out a ?in a +in a v? +in b ?in b out b v+ 00935-003 figure 3. 8-lead soic, 8-lead msop, and 8-lead tssop (r, rm, and ru suffixes) ad8544 1 2 3 4 14 13 12 11 o ut a ?in a +in a v+ v? +in d ?in d out d 5 6 7 10 9 8 +in b ?in b o ut b out c ?in c +in c 0 0935-004 figure 4. 14-lead soic and 14-lead tssop (r and ru suffixes)
ad8541/ad8542/ad8544 rev. e | page 2 of 20 table of contents features .............................................................................................. 1 applications....................................................................................... 1 general description ......................................................................... 1 pin configurations ........................................................................... 1 revision history ............................................................................... 2 specifications..................................................................................... 3 electrical characteristics............................................................. 3 absolute maximum ratings............................................................ 6 thermal resistance ...................................................................... 6 esd caution.................................................................................. 6 typical performance characteristics ..............................................7 theory of operation ...................................................................... 12 notes on the ad854x amplifiers............................................. 12 applications..................................................................................... 13 notch filter ................................................................................. 13 comparator function ................................................................ 13 photodiode application ............................................................ 14 outline dimensions ....................................................................... 15 ordering guide .......................................................................... 17 revision history 1/07rev. d to rev. e updated format..................................................................universal changes to photodiode application section .............................. 14 changes to ordering guide .......................................................... 17 8/04rev. c to rev. d changes to ordering guide ............................................................ 5 changes to figure 3........................................................................ 10 updated outline dimensions ....................................................... 12 1/03rev. b to rev. c updated format..................................................................universal changes to general description .................................................... 1 changes to ordering guide ............................................................ 5 changes to outline dimensions................................................... 12
ad8541/ad8542/ad8544 rev. e | page 3 of 20 specifications electrical characteristics v s = 2.7 v, v cm = 1.35 v, t a = 25c, unless otherwise noted. table 1. parameter symbol conditions min typ max unit input characteristics offset voltage v os 1 6 mv C40c t a +125c 7 mv input bias current i b 4 60 pa C40c t a +85c 100 pa C40c t a +125c 1000 pa input offset current i os 0.1 30 pa C40c t a +85c 50 pa C40c t a +125c 500 pa input voltage range 0 2.7 v common-mode rejection ratio cmrr v cm = 0 v to 2.7 v 40 45 db C40c t a +125c 38 db large signal voltage gain a vo r l = 100 k , v o = 0.5 v to 2.2 v 100 500 v/mv C40c t a +85c 50 v/mv C40c t a +125c 2 v/mv offset voltage drift v os /t C40c t a +125c 4 v/c bias current drift i b /t C40c t a +85c 100 fa/c C40c t a +125c 2000 fa/c offset current drift i os /t C40c t a +125c 25 fa/c output characteristics output voltage high v oh i l = 1 ma 2.575 2.65 v C40c t a +125c 2.550 v output voltage low v ol i l = 1 ma 35 100 mv C40c t a +125c 125 mv output current i out v out = v s C 1 v 15 ma i sc 20 ma closed-loop output impedance z out f = 200 khz, a v = 1 50 power supply power supply rejection ratio psrr v s = 2.5 v to 6 v 65 76 db C40c t a +125c 60 db supply current/amplifier i sy v o = 0 v 38 55 a C40c t a +125c 75 a dynamic performance slew rate sr r l = 100 k 0.4 0.75 v/s settling time t s to 0.1% (1 v step) 5 s gain bandwidth product gbp 980 khz phase margin o 63 degrees noise performance voltage noise density e n f = 1 khz 40 nv/hz e n f = 10 khz 38 nv/hz current noise density i n <0.1 pa/hz
ad8541/ad8542/ad8544 rev. e | page 4 of 20 v s = 3.0 v, v cm = 1.5 v, t a = 25c, unless otherwise noted. table 2. parameter symbol conditions min typ max unit input characteristics offset voltage v os 1 6 mv C40c t a +125c 7 mv input bias current i b 4 60 pa C40c t a +85c 100 pa C40c t a +125c 1000 pa input offset current i os 0.1 30 pa C40c t a +85c 50 pa C40c t a +125c 500 pa input voltage range 0 3 v common-mode rejection ratio cmrr v cm = 0 v to 3 v 40 45 db C40c t a +125c 38 db large signal voltage gain a vo r l = 100 k , v o = 0.5 v to 2.2 v 100 500 v/mv C40c t a +85c 50 v/mv C40c t a +125c 2 v/mv offset voltage drift v os /t C40c t a +125c 4 v/c bias current drift i b /t C40c t a +85c 100 fa/c C40c t a +125c 2000 fa/c offset current drift i os /t C40c t a +125c 25 fa/c output characteristics output voltage high v oh i l = 1 ma 2.875 2.955 v C40c t a +125c 2.850 v output voltage low v ol i l = 1 ma 32 100 mv C40c t a +125c 125 mv output current i out v out = v s C 1 v 18 ma i sc 25 ma closed-loop output impedance z out f = 200 khz, a v = 1 50 power supply power supply rejection ratio psrr v s = 2.5 v to 6 v 65 76 db C40c t a +125c 60 db supply current/amplifier i sy v o = 0 v 40 60 a C40c t a +125c 75 a dynamic performance slew rate sr r l = 100 k 0.4 0.8 v/s settling time t s to 0.01% (1 v step) 5 s gain bandwidth product gbp 980 khz phase margin o 64 degrees noise performance voltage noise density e n f = 1 khz 42 nv/hz e n f = 10 khz 38 nv/hz current noise density i n <0.1 pa/hz
ad8541/ad8542/ad8544 rev. e | page 5 of 20 v s = 5.0 v, v cm = 2.5 v, t a = 25c, unless otherwise noted. table 3. parameter symbol conditions min typ max unit input characteristics offset voltage v os 1 6 mv C40c t a +125c 7 mv input bias current i b 4 60 pa C40c t a +85c 100 pa C40c t a +125c 1000 pa input offset current i os 0.1 30 pa C40c t a +85c 50 pa C40c t a +125c 500 pa input voltage range 0 5 v common-mode rejection ratio cmrr v cm = 0 v to 5 v 40 48 db C40c t a +125c 38 db large signal voltage gain a vo r l = 100 k , v o = 0.5 v to 2.2 v 20 40 v/mv C40c t a +85c 10 v/mv C40c t a +125c 2 v/mv offset voltage drift v os /t C40c t a +125c 4 v/c bias current drift i b /t C40c t a +85c 100 fa/c C40c t a +125c 2000 fa/c offset current drift i os /t C40c t a +125c 25 fa/c output characteristics output voltage high v oh i l = 1 ma 4.9 4.965 v C40c t a +125c 4.875 v output voltage low v ol i l = 1 ma 25 100 mv C40c t a +125c 125 mv output current i out v out = v s C 1 v 30 ma i sc 60 ma closed-loop output impedance z out f = 200 khz, a v = 1 45 power supply power supply rejection ratio psrr v s = 2.5 v to 6 v 65 76 db C40c t a +125c 60 db supply current/amplifier i sy v o = 0 v 45 65 a C40c t a +125c 85 a dynamic performance slew rate sr r l = 100 k, c l = 200 pf 0.45 0.92 v/s full-power bandwidth bw p 1% distortion 70 khz settling time t s to 0.1% (1 v step) 6 s gain bandwidth product gbp 1000 khz phase margin o 67 degrees noise performance voltage noise density e n f = 1 khz 42 nv/hz e n f = 10 khz 38 nv/hz current noise density i n <0.1 pa/hz
ad8541/ad8542/ad8544 rev. e | page 6 of 20 absolute maximum ratings table 4. parameter rating supply voltage (v s ) 6 v input voltage gnd to v s differential input voltage 1 6 v storage temperature range ?65c to +150c operating temperature range ?40c to +125c junction temperature range ?65c to +150c lead temperature (soldering, 60 sec) 300c 1 for supplies less than 6 v, the differential input voltage is equal to v s . stresses above those listed under absolute maximum ratings may cause permanent damage to the device. this is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. exposure to absolute maximum rating conditions for extended periods may affect device reliability. thermal resistance ja is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages. table 5. package type ja jc unit 5-lead sc70 (ks) 376 126 c/w 5-lead sot-23 (rj) 230 146 c/w 8-lead soic (r) 158 43 c/w 8-lead msop (rm) 210 45 c/w 8-lead tssop (ru) 240 43 c/w 14-lead soic (r) 120 36 c/w 14-lead tssop (ru) 240 43 c/w esd caution
ad8541/ad8542/ad8544 rev. e | page 7 of 20 typical performance characteristics input offset voltage (mv) ?4.5 ?3.5 4.5 ?2.5 ?1.5 ?0.5 0.5 number of amplifiers 180 160 0 80 60 40 20 140 100 120 1.5 2.5 3.5 v s =5v v cm =2.5v t a = 25c 00935-005 figure 5. input offset voltage distribution input offset voltage (mv) 1.0 ?2.5 ?4.0 ?55 ?35 ?15 0.5 ?2.0 ?3.0 ?3.5 ?1.0 ?1.5 0 ?0.5 145 5 25 45 65 85 105 125 temperature (c) v s = 2.7v and 5v v cm = v s /2 00935-006 figure 6. input offset voltage vs. temperature common-mode voltage (v) input bias current (pa) 9 8 0 4 3 2 1 7 5 6 ?0.5 0.5 1.5 2.5 3.5 4.5 5.5 v s = 2.7v and 5v v cm = v s /2 00935-007 figure 7. input bias current vs. common-mode voltage temperature (c) input bias current (pa) 400 0 350 200 150 100 50 300 250 ?40 ?20 0 20 40 60 80 100 120 140 v s = 2.7v and 5v v cm = v s /2 00935-008 figure 8. input bias current vs. temperature temperature (c) input offset current (pa) 7 ?1 6 3 2 1 0 5 4 v s = 2.7v and 5v v cm = v s /2 ?55 ?35 ?15 5 25 45 65 85 105 125 145 00935-009 figure 9. input offset current vs. temperature frequency (hz) power supply rejection (db) 160 140 ?40 120 100 80 60 40 20 0 ?20 100 1k 10k 100k 1m 10m +psrr ?psrr v s = 2.7v t a = 25c 00935-010 figure 10. power supply reje ction ratio vs. frequency
ad8541/ad8542/ad8544 rev. e | page 8 of 20 load current (ma) output voltage (mv) 10k 100 0.01 1 0.1 10 1k 0.001 0.01 0.1 1 10 100 v s = 2.7v t a = 25c source sink 00935-011 figure 11. output voltage to supply rail vs. load current output swing (v p-p) 3.0 2.5 0 2.0 1.5 0.5 1.0 frequency (hz) 1k 10k 100k 1m 10m v s = 2.7v v in = 2.5v p-p r l = 2k ? t a = 25c 00935-012 figure 12. closed-loop output voltage swing vs. frequency capacitance (pf) small signal overshoot (%) 60 0 30 20 10 40 50 10 100 1k 10k +os ?os v s = 2.7v r l = t a = 25c 00935-013 figure 13. small signal overshoot vs. load capacitance small signal overshoot (%) 60 0 30 20 10 40 50 capacitance (pf) 10 100 1k 10k +os ?os v s = 2.7v r l = 10k ? t a = 25c 00935-014 figure 14. small signal overshoot vs. load capacitance small signal overshoot (%) 60 0 30 20 10 40 50 capacitance (pf) 10 100 1k 10k +os ?os v s = 2.7v r l = 2k ? t a = 25c 00935-015 figure 15. small signal overshoot vs. load capacitance 1.35 v 50mv 10s v s = 2.7v r l = 100k ? c l = 300pf a v = 1 t a = 25c 0 0935-016 figure 16. small signal transient response
ad8541/ad8542/ad8544 rev. e | page 9 of 20 1.35v v s = 2.7v r l = 2k ? a v = 1 t a = 25c 500mv 10s 00935-017 figure 17. large signal transient response gain (db) 80 60 40 20 0 45 90 135 180 phase shift (degrees) frequency (hz) 1k 10k 100k 1m 10m v s = 2.7v r l = no load t a = 25c 00935-018 figure 18. open-loop gain and phase vs. frequency power supply rejection ratio (db) 160 140 ?40 120 100 80 60 40 20 ?20 0 frequency (hz) 100 1k 10k 100k 1m 10m +psrr ?psrr v s = 5v t a = 25c 00935-019 figure 19. power supply reje ction ratio vs. frequency common-mode rejection (db) 60 50 40 30 20 10 0 ?10 70 80 90 frequency (hz) 1k 10k 100k 1m 10m v s = 5v t a = 25c 00935-020 figure 20. common-mode reje ction ratio vs. frequency load current (ma) output voltage (mv) 100 0.01 1 0.1 10 1k 0.001 0.01 0.1 1 10 100 v s = 5v t a = 25c source sink 10k 00935-021 figure 21. output voltage to supply rail vs. frequency output swing (v p-p) 3.0 2.5 0 2.0 1.5 0.5 1.0 4.0 3.5 5.0 4.5 frequency (hz) 1k 10k 100k 1m 10m v s = 5v v in = 4.9v p-p r l = no load t a = 25c 00935-022 figure 22. closed-loop output voltage swing vs. frequency
ad8541/ad8542/ad8544 rev. e | page 10 of 20 output swing (v p-p) 3.0 2.5 0 2.0 1.5 0.5 1.0 4.0 3.5 5.0 4.5 frequency (hz) 1k 10k 100k 1m 10m v s = 5v v in = 4.9v p-p r l = 2k ? t a = 25c 00935-023 figure 23. closed-loop output voltage swing vs. frequency small signal overshoot (%) 60 0 30 20 10 40 50 capacitance (pf) 10 100 1k 10k +os ?os v s = 5v r l = 10k ? t a = 25c 00935-024 figure 24. small signal overshoot vs. load capacitance small signal overshoot (%) 60 0 30 20 10 40 50 capacitance (pf) 10 100 1k 10k v s = 5v r l = 2k ? t a = 25c +os ?os 00935-025 figure 25. small signal overshoot vs. load capacitance small signal overshoot (%) 60 0 30 20 10 40 50 capacitance (pf) 10 100 1k 10k +os ?os v s = 5v r l = t a = 25c 00935-026 figure 26. small signal overshoot vs. load capacitance 2.5v v s = 5v r l = 100k ? c l = 300pf a v = 1 t a = 25c 50mv 10s 00935-027 figure 27. small signal transient response 2.5v v s = 5v r l = 2k ? a v = 1 t a = 25c 1v 10s 00935-028 figure 28. large signal transient response
ad8541/ad8542/ad8544 rev. e | page 11 of 20 gain (db) 80 60 40 20 0 45 90 135 180 phase shift (degrees) frequency (hz) 1k 10k 100k 1m 10m v s = 5v r l = no load t a = 25c 00935-029 supply current/amplifier (a) 55 20 50 45 40 35 30 25 temperature (c) ?55 ?35 ?15 5 25 45 65 85 105 125 145 v s = 5v v s = 2.7v 00935-032 figure 32. supply current per amplifier vs. temperature figure 29. open-loop gain and phase vs. frequency 2.5v v s = 5v r l = 10k ? a v = 1 t a = 25c 1v 20s v in v out 00935-030 impedance ( ? ) 1000 900 0 800 700 600 500 400 300 200 100 frequency (hz) 1k 10k 100k 1m 10m 100m v s = 2.7v and 5v a v =1 t a =25c 00935-033 figure 33. closed-loop outp ut impedance vs. frequency figure 30. no phase reversal frequency (khz) 15nv/di v v s =5v marker set @ 10khz marker reading: 37.6nv/ hz t a =25c 0 5 10 15 20 25 00935-034 supply voltage (v) supply current/amplifier (a) 60 0 50 40 30 20 10 t a = 25c 0123456 00935-031 figure 34. voltage noise figure 31. supply current per amplifier vs. supply voltage
ad8541/ad8542/ad8544 rev. e | page 12 of 20 theory of operation notes on the ad854x amplifiers the ad8541/ad8542/ad8544 amplifiers are improved performance, general-purpose operational amplifiers. performance has been improved over previous amplifiers in several ways. lower supply current for 1 mhz gain bandwidth the ad854x series typically uses 45 a of current per amplifier. this is much less than the 200 a to 700 a used in earlier generation parts with similar performance. this makes the ad854x series a good choice for upgrading portable designs for longer battery life. alternatively, additional functions and performance can be added at the same current drain. higher output current at 5 v single supply, the short-circuit current is typically 60 a. even 1 v from the supply rail, the ad854x amplifiers can provide a 30 ma output current, sourcing or sinking. sourcing and sinking are strong at lower voltages, with 15 ma available at 2.7 v and 18 ma at 3.0 v. for even higher output currents, see the analog devices, inc. ad8531 / ad8532 / ad8534 parts, with output currents to 250 ma. information on these parts is available from your analog devices representative, and data sheets are available at www.analog.com . better performance at lower voltages the ad854x family of parts was designed to provide better ac performance at 3.0 v and 2.7 v than previously available parts. typical gain-bandwidth product is close to 1 mhz at 2.7 v. voltage gain at 2.7 v and 3.0 v is typically 500,000. phase margin is typically over 60c, making the part easy to use.
ad8541/ad8542/ad8544 rev. e | page 13 of 20 applications notch filter the ad854x have very high open-loop gain (especially with a supply voltage below 4 v), which makes it useful for active filters of all types. for example, figure 35 illustrates the ad8542 in the classic twin-t notch filter design. the twin-t notch is desired for simplicity, low output impedance, and minimal use of op amps. in fact, this notch filter can be designed with only one op amp if q adjustment is not required. simply remove u2 as illustrated in figure 36 . however, a major drawback to this circuit topology is ensuring that all the rs and cs closely match. the components must closely match or notch frequency offset and drift causes the circuit to no longer attenuate at the ideal notch frequency. to achieve desired performance, 1% or better component tolerances or special component screens are usually required. one method to desensitize the circuit-to-component mismatch is to increase r2 with respect to r1, which lowers q. a lower q increases attenuation over a wider frequency range but reduces attenuation at the peak notch frequency. 1/2 ad8542 5 6 7 8 3 2 4 1 1/2 ad8542 5.0 v u1 v out u2 r2 2.5k ? r1 97.5k ? 2.5v ref c 26.7nf c 26.7nf 2 .5 v ref r/2 50k ? r 100k ? r 100k ? c2 53.6f f 0 = f 0 = 1 2 rc 1 r1 r1 + r2 4 1 ? 00935-035 figure 35. 60 hz twin-t notch filter, q = 10 c 2c r/2 rr 7 3 2 4 6 ad8541 5.0 v c v out 2.5v ref v in 00935-036 figure 36. 60 hz twin-t notch filter, q = (ideal) figure 37 is an example of the ad8544 in a notch filter circuit. the frequency dependent negative resistance (fndr) notch filter has fewer critical matching requirements than the twin-t notch and for the fndr q is directly proportional to a single resistor r1. while matching component values is still important, it is also much easier and/or less expensive to accomplish in the fndr circuit. for example, the twin-t notch uses three capacitors with two unique values, whereas the fndr circuit uses only two capacitors, which may be of the same value. u3 is simply a buffer that is added to lower the output impedance of the circuit. 4 1/4 ad8544 11 6 1/4 ad8544 1/4 ad8544 10 8 9 2 1 3 1/4 ad8544 12 14 13 5 7 u3 u1 u4 u2 c2 1f c1 1f r1 q adjust 200 ? r 2.61k ? r 2.61k ? r 2.61k ? r 2.61k ? v out 2.5v ref 2.5v ref 2 .5 v ref nc f = 1 2 lc1 l = r 2 c2 00935-037 figure 37. fndr 60 hz notch filter with output buffer comparator function a comparator function is a common application for a spare op amp in a quad package. figure 38 illustrates ? of the ad8544 as a comparator in a standard overload detection application. unlike many op amps, the ad854x family can double as comparators because this op amp family has a rail-to-rail differential input range, rail-to-rail output, and a great speed vs. power ratio. r2 is used to introduce hysteresis. the ad854x, when used as comparators, have 5 s propagation delay at 5 v and 5 s overload recovery time. 1/4 ad8541 r1 1k? v out 2.5v ref v in r2 1m ? 2.5v dc 00935-038 figure 38. ad854x comparator applicationoverload detector
ad8541/ad8542/ad8544 rev. e | page 14 of 20 photodiode application the ad854x family has very high impedance with an input bias current typically around 4 pa. this characteristic allows the ad854x op amps to be used in photodiode applications and other applications that require high input impedance. note that the ad854x has significant voltage offset that can be removed by capacitive coupling or software calibration. figure 39 illustrates a photodiode or current measurement application. the feedback resistor is limited to 10 m to avoid excessive output offset. also, note that a resistor is not needed on the noninverting input to cancel bias current offset because the bias current-related output offset is not significant when compared to the voltage offset contribution. for best performance, follow the standard high impedance layout techniques, which include: ? shielding the circuit. ? cleaning the circuit board. ? putting a trace connected to the noninverting input around the inverting input. ? using separate analog and digital power supplies. ad8541 4 6 7 3 2 d or v+ 2.5v ref c 100pf r 10m ? 2.5v ref v out 00935-039 figure 39. high input impedance applicationphotodiode amplifier
ad8541/ad8542/ad8544 rev. e | page 15 of 20 outline dimensions pin 1 1.60 bsc 2.80 bsc 1.90 bsc 0.95 bsc 5 12 3 4 0.22 0.08 10 5 0 0.50 0.30 0.15 max seating plane 1.45 max 1.30 1.15 0.90 2.90 bsc 0.60 0.45 0.30 compliant to jedec standards mo-178-aa 4.50 4.40 4.30 14 8 7 1 6.40 bsc pin 1 5.10 5.00 4.90 0.65 bsc seating plane 0.15 0.05 0.30 0.19 1.20 max 1.05 1.00 0.80 0.20 0.09 8 0 0.75 0.60 0.45 coplanarity 0.10 compliant to jedec standards mo-153-ab-1 figure 40. 5-lead small outline transistor package [sot-23] (rj-5) dimensions shown in millimeters figure 41. 14-lead thin shrink small outline package [tssop] (ru-14) dimensions shown in millimeters compliant to jedec standards mo-203-aa 0.30 0.15 0 . 1 0 m a x 1.00 0.90 0.70 0.46 0.36 0.26 seating plane 0.22 0.08 1.10 0.80 4 5 123 pin 1 0.65 bsc 2.20 2.00 1.80 2.40 2.10 1.80 1.35 1.25 1.15 0.10 coplanarity 0.40 0.10 controlling dimensions are in millimeters; inch dimensions (in parentheses) are rounded-off millimeter equivalents for reference only and are not appropriate for use in design. compliant to jedec standards ms-012-ab 060606-a 14 8 7 1 6.20 (0.2441) 5.80 (0.2283) 4.00 (0.1575) 3.80 (0.1496) 8.75 (0.3445) 8.55 (0.3366) 1.27 (0.0500) bsc seating plane 0.25 (0.0098) 0.10 (0.0039) 0.51 (0.0201) 0.31 (0.0122) 1.75 (0.0689) 1.35 (0.0531) 0.50 (0.0197) 0.25 (0.0098) 1.27 (0.0500) 0.40 (0.0157) 0.25 (0.0098) 0.17 (0.0067) coplanarity 0.10 8 0 45 figure 42. 5-lead thin shrink small outline transistor package [sc70] (ks-5) dimensions shown in millimeters figure 43. 14-lead standard small outline package [soic_n] narrow body (r-14) dimensions shown in millimeters and (inches)
ad8541/ad8542/ad8544 rev. e | page 16 of 20 compliant to jedec standards mo-187-aa 0.80 0.60 0.40 8 0 4 8 1 5 pin 1 0.65 bsc seating plane 0.38 0.22 1.10 max 3.20 3.00 2.80 coplanarity 0.10 0.23 0.08 3.20 3.00 2.80 5.15 4.90 4.65 0.15 0.00 0.95 0.85 0.75 8 5 41 pin 1 0.65 bsc seating plane 0.15 0.05 0.30 0.19 1.20 max 0.20 0.09 8 0 6.40 bsc 4.50 4.40 4.30 3.10 3.00 2.90 coplanarit y 0.10 0.75 0.60 0.45 compliant to jedec standards mo-153-aa figure 44. 8-lead mini small outline package [msop] (rm-8) dimensions shown in millimeters figure 45. 8-lead thin shrink small outline package [tssop] (ru-8) dimensions shown in millimeters controlling dimensions are in millimeters; inch dimensions (in parentheses) are rounded-off millimeter equivalents for reference only and are not appropriate for use in design. compliant to jedec standards ms-012-a a 060506-a 0.25 (0.0098) 0.17 (0.0067) 1.27 (0.0500) 0.40 (0.0157) 0.50 (0.0196) 0.25 (0.0099) 45 8 0 1.75 (0.0688) 1.35 (0.0532) seating plane 0.25 (0.0098) 0.10 (0.0040) 4 1 85 5.00 (0.1968) 4.80 (0.1890) 4.00 (0.1574) 3.80 (0.1497) 1.27 (0.0500) bsc 6.20 (0.2440) 5.80 (0.2284) 0.51 (0.0201) 0.31 (0.0122) coplanarity 0.10 figure 46. 8-lead standard small outline package [soic_n] narrow body (r-8) dimensions shown in millimeters and (inches)
ad8541/ad8542/ad8544 rev. e | page 17 of 20 ordering guide model temperature range package description package option branding ad8541aks-r2 C40c to +125c 5-lead sc70 ks-5 a4b ad8541aks-reel7 C40c to +125c 5-lead sc70 ks-5 a4b AD8541AKSZ-R2 1 C40c to +125c 5-lead sc70 ks-5 a12 ad8541aksz-reel7 1 C40c to +125c 5-lead sc70 ks-5 a12 ad8541ar C40c to +125c 8-lead soic_n r-8 ad8541ar-reel C40c to +125c 8-lead soic_n r-8 ad8541ar-reel7 C40c to +125c 8-lead soic_n r-8 ad8541arz 1 C40c to +125c 8-lead soic_n r-8 ad8541arz-reel 1 C40c to +125c 8-lead soic_n r-8 ad8541arz-reel7 1 C40c to +125c 8-lead soic_n r-8 ad8541art-r2 C40c to +125c 5-lead sot-23 rj-5 a4a ad8541art-reel C40c to +125c 5-lead sot-23 rj-5 a4a ad8541art-reel7 C40c to +125c 5-lead sot-23 rj-5 a4a ad8541artz-r2 1 C40c to +125c 5-lead sot-23 rj-5 a4a# ad8541artz-reel 1 C40c to +125c 5-lead sot-23 rj-5 a4a# ad8541artz-reel7 1 C40c to +125c 5-lead sot-23 rj-5 a4a# ad8542ar C40c to +125c 8-lead soic_n r-8 ad8542ar-reel C40c to +125c 8-lead soic_n r-8 ad8542ar-reel7 C40c to +125c 8-lead soic_n r-8 ad8542arz 1 C40c to +125c 8-lead soic_n r-8 ad8542arz-reel 1 C40c to +125c 8-lead soic_n r-8 ad8542arz-reel7 1 C40c to +125c 8-lead soic_n r-8 ad8542arm-r2 C40c to +125c 8-lead msop rm-8 ava ad8542arm-reel C40c to +125c 8-lead msop rm-8 ava ad8542armz-r2 1 C40c to +125c 8-lead msop rm-8 ava# ad8542armz-reel 1 C40c to +125c 8-lead msop rm-8 ava# ad8542aru C40c to +125c 8-lead tssop ru-8 ad8542aru-reel C40c to +125c 8-lead tssop ru-8 ad8542aruz 1 C40c to +125c 8-lead tssop ru-8 ad8542aruz-reel 1 C40c to +125c 8-lead tssop ru-8 ad8544ar C40c to +125c 14-lead soic_n r-14 ad8544ar-reel C40c to +125c 14-lead soic_n r-14 ad8544ar-reel7 C40c to +125c 14-lead soic_n r-14 ad8544arz 1 C40c to +125c 14-lead soic_n r-14 ad8544arz-reel 1 C40c to +125c 14-lead soic_n r-14 ad8544arz-reel7 1 C40c to +125c 14-lead soic_n r-14 ad8544aru C40c to +125c 14-lead tssop ru-14 ad8544aru-reel C40c to +125c 14-lead tssop ru-14 ad8544aruz 1 C40c to +125c 14-lead tssop ru-14 ad8544aruz-reel 1 C40c to +125c 14-lead tssop ru-14 1 z = pb-free part; # denotes lead-free product, may be top or bottom marked.
ad8541/ad8542/ad8544 rev. e | page 18 of 20 notes
ad8541/ad8542/ad8544 rev. e | page 19 of 20 notes
ad8541/ad8542/ad8544 rev. e | page 20 of 20 notes ?2007 analog devices, inc. all rights reserved. trademarks and registered trademarks are the property of their respective owners. c00935-0-1/07(e)


▲Up To Search▲   

 
Price & Availability of AD8541AKSZ-R2

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X